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We experimentally demonstrated the use of intelligent impairment equalization (IIE) for microwave downconversion link
linearization in noncooperative systems. Such an equalizer is realized based on an artificial neural network (ANN). Once the
training process is completed, the inverse link transfer function can be determined. With the inverse transformation for the
detected signal after transmission, the third-order intermodulation distortion components are suppressed significantly
without requiring any prior information from an input RF signal. Furthermore, fast training speed is achieved, since the
configuration of ANN-based equalizer is simple. Experimental results show that the spurious-free dynamic range of
the proposed link is improved to 106.5 dB · Hz2/3, which is 11.3 dB higher than that of a link without IIE. Meanwhile, the
training epochs reduce to only five, which has the potential to meet the practical engineering requirement.
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1. Introduction

Directly transmitting frequency downconverted signals over a
photonic link, which is defined as a downconversion link, has
been considered as an enabling solution to meet the demand
of antenna remoting applications such as radio over fiber
(RoF), cellular wireless networks, radar systems, and electronic
reconnaissance systems[1–4] due to the convenience of digitali-
zation and postprocessing. Nevertheless, the nonlinearity of
the modulator is one of the main problems that may lead to
the intermodulation distortion (IMD), in particular the third-
order IMD (IMD3), which would degrade the spurious free
dynamic range (SFDR)[5]. So far, several effective schemes have
been reported to improve the linearity of downconversion links,
including (i) employing cascaded modulators combined with an
optical filter[6–8], and (ii) using one dual-polarization quadrature
phase shift keying (QPSK) Mach–Zehnder modulator (MZM)
and two photodetectors (PDs)[9]. However, most microwave
photonic-based systems, in particular the array radar systems
and electronic reconnaissance systems, are built up based on
simple intensity modulation and direct detection (IM-DD).

Such systems are barely upgraded by using previous approaches,
since the fiber link almost needs to be reconstructed, resulting in
high cost and complex configuration. In order to overcome such
a problem, the linearized IM-DD links combined with digital
signal postprocessing have been proposed[10,11]. However, they
could not be applied to a noncooperative system, where the fre-
quency, bandwidth, and modulation format of the transmitted
signal are unknown.
Artificial intelligence, on the other hand, has been a topic of

extensive research in signal processing[12]. Based on artificial
neural networks (ANNs) or deep learning, nonlinearity moni-
toring[13], integrated devices design[14], modulation formats
identification[15,16], and link linearization[17] in photonic sys-
tems have been demonstrated with the advantages of high
speed, simple hardware, and high flexibility. Consequently, an
intelligent receiver that could linearize the microwave down-
conversion link would be one major characteristic in next-
generation microwave photonic systems. However, the training
speed and the information processing speed of ANNs become
a practical problem for the application of microwave downcon-
version in noncooperative systems.
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In this study, a simple linearized photonic downconversion
link for microwave signals is proposed and experimentally dem-
onstrated by using fast and intelligent impairment equalization
(IIE). Such an equalizer only consists of a three-layer ANN.
With supervised learning, the inverse link transfer function
can be trained successfully. Transforming the detected signals
by using such an inverse function, the downconversion link lin-
earity can be enhanced. Different from the previous approach in
Ref. [17], there is no need to do the complex Fourier transforms
in the proposed method, since the inputs of the equalizer are
an intermediate frequency (IF) signal in the time domain,
instead of a radio-frequency (RF) signal in the frequency
domain. Furthermore, fast training and information processing
are achieved, since the configuration of the intelligent equalizer
is simple. In addition, the proposed technique does not require
any prior information from the input RF signal when the train-
ing process is completed, and thus, could be applied to nonco-
operative systems. Experimental results show that∼15 dB IMD3
suppression is achieved with the RF input power of 7 dBm per
tone. Furthermore, the proposed link has an SFDR of
106.5 dB · Hz2=3, which is 11.3 dB more than that of a link with-
out impairment equalization. Meanwhile, the training epochs
reduce to only five.

2. Principle

The principle of the proposed linearized downconversion link is
shown in Fig. 1. Assuming the modulation coefficients of input
RF signal and local oscillator (LO) signal arem1 andm2, respec-
tively, the downconverted IF signal ijΩ after dual-electrode
MZM (DE-MZM) and direct detection can be expressed as[10]

ijΩ = 4ℜPcJ1�m1�J1�m2� cos ϕ cos Ωt, (1)

where ℜ, Pc, and Ω are the responsivity of the photodetector
(PD), the input optical power, and the frequency of the down-
converted signal, respectively. ϕ denotes the phase difference
between two arms of DE-MZM induced by DC bias. As can
be seen from Eq. (1), the bandwidth of the proposed link only
depends on that of the PD.
By Taylor-expanding the Bessel function containing the term

of m1 in Eq. (1), the component of the downconverted signal
becomes

ijΩ =
�
2m1 −

1
4
m3

1

�
ℜPcJ1�m2� cos ϕ cos Ωt: (2)

According to Eq. (2), the transfer function of such a link is
illustrated as Fig. 1, where the nonlinearity (i.e., harmonic) indu-
ces the IMD3 components.
In order to achieve the high linearity of the link, the inverse

transfer function shown as in Fig. 1 (i.e., the red line) should be
estimated accurately, which is the outstanding ability of an
ANN-based equalizer. Different from the previous digital post-
processing approaches, IMD3 compensation based on such an
equalizer does not require any information of the transmission

link. Moreover, this method does not require any prior informa-
tion from the input RF signal either when the training process is
completed.
The equalization-based inverse link transfer function estima-

tion, which can be considered as a black box, is illustrated as
Fig. 2. The architecture is a three-layer multilayer perceptron
that consists of an input layer, a hidden layer, and an output
layer. In the proposed scheme, only one neuron in the input
and output layers is required, while the number of neurons in
the hidden layer is 20. The activation functions f �·� and g�·�
are a tangent sigmoid function for hidden layer neurons and
a linear function for the output layer neurons, respectively. In
this case, the outputs of the hidden layer (i.e., ui) and the output
layer (i.e., y) can be expressed as

ui = f �Vix� ci�, (3)

y = g

�XN
i=1

Wiui � b

�
, (4)

where Vi andWi are weights of the hidden and output layers, ci
and b are bias values of the hidden and output layers, and x is the
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Fig. 1. Simplified diagram of linearized downconversion link and correspond-
ing signal spectra and transfer characteristics. DE-MZM/DD, dual-electrode
Mach–Zehnder modulated direct detection; IMD3, third-order intermodulation
distortion; IIE, intelligent impairment equalization; RF, radio frequency; IF,
intermediate frequency.
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Fig. 2. Equalization-based inverse link transfer function estimation. BP,
backpropagation.
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input vectors. Finally, a supervised learning method called back-
propagation (BP) is utilized for training of such an intelligent
equalizer (i.e., updating weights Vi and Wi) by comparing the
output vectors y and targets vectors T , which are the initial
downconverted signals without transmitting DE-MZM/DD
link. The training process is completed when the mean square
error (MSE)

��y − T
��2 achieves the predetermined value. Once

the weights are determined, the inverse link transfer function
could be obtained according to Eq. (4).

3. Experimental Setup

The experimental setup is illustrated in Fig. 3. A light source at
1550 nm with the power of 8 dBm is modulated by a DE-MZM
that is driven by a two-tone RF signal and an LO signal. On the
one hand, those RF signals are downconverted directly by a
wideband mixer. Subsequently, such signals as target vectors
are sent to an IIE through a low-pass filter and a delay line.
On the other hand, the RF signals and LO signal are converted
to an optical signal, and then are amplified by an erbium-doped
fiber amplifier (EDFA). Afterwards, such an optical signal is
detected by a PD with a responsivity of 6 V/W (including an
amplifier) and a 15 GHz bandwidth. In the experiment, the
frequencies of the two-tone RF and LO signals are set to be
2.11, 2.13, and 2.5 GHz, respectively. In this case, the downcon-
verted signals with the frequencies of 0.37 and 0.39 GHz are gen-
erated after the PD. Finally, such signals are digitalized by a real-
time oscilloscope running at 40 GS/s, and then processed in an
IIE with the target vectors, where the highly linear downcon-
verted link can be achieved. In addition, the DE-MZM needs
to be biased at the quadrature point by utilizing a bias feedback
controller, which could stabilize the link transfer function.

4. Results and Discussion

In the experiment, the overall data comprising 800,002 photo-
current vectors from the oscilloscope are divided into two dis-
tinct subsets, including training and testing data sets. Among
them, the length of the training subset is set to be 10,000, as well
as that of the target vectors. Once the training phase is

completed, the whole link transfer function is determined. In
this case, a linearized microwave downconversion link is real-
ized without requiring any prior information.
Figure 4(a) shows the MSE during the training phase as a

function of the number of epochs, which are the steps in the
ANN training process. Obviously, the MSE decreases with an
increase in the number of epochs. As can be seen from the inset
of Fig. 4(a), the IMD3 components are observed when the MSE
is 10−6, since the inverse transfer function fitted by the ANN
deviates from the theoretical calculation. Therefore, as the pre-
determined MSE value decreases to 10−7, the best training per-
formance could achieve 3.2 × 10−8 at epoch 5. In this case, the
measured training time for 10,000 points is approximately 2.3 s,
while the testing time for 200,000 points is only 0.12 s, which
indicates that the fast training speed and information processing
speed are achieved. Compared to the approach in Ref. [17], the
faster convergence speed is obtained by using the proposed IIE.
In order to estimate the effectiveness of IIE, the DE-MZM/DD

transmission link and inverse link transfer characteristics are
shown in Fig. 4(b), where the theoretical inverse transfer
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Fig. 3. Experimental setup of proposed linearized microwave downconversion
link. LD, laser diode; PC, polarization controller; DE-MZM, dual-electrode Mach–
Zehnder modulator; LO, local oscillator; EDFA, erbium-doped fiber amplifier;
PD, photodetector; IIE, intelligent impairment equalization.
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Fig. 4. (a) Dependence of MSE on the number of epochs for the training sub-
sets; inset, the electrical spectrum of two-tone signal with the MSE of 10−6;
(b) DE-MZM/DD-based transmission link and calculated inverse link transfer
functions; black solid curve, theoretical inverse transfer function; red dotted
curve, IIE-based inverse link transfer function; inset, whole downconversion
link transfer characteristic by applying IIE.
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function calculated by Eq. (2) is also presented. It is evident that
the IIE-based fitting curve (i.e., the red dotted line) that agrees
well with the theoretical calculation (i.e., the black solid line),
presents the inverse characteristic of the DE-MZM/DD link.
By applying this inverse function, the whole link transfer
characteristic after compensation is illustrated in the inset of
Fig. 4(b), which indicates that the highly linear microwave
downconversion link is realized.
Figures 5(a) and 5(b) show the electrical spectra before and

after applying IIE when the input two-tone frequencies are
2.11 and 2.13 GHz. For the first case, strong IMD3 components
are observed when the RF input power is 7 dBm per tone. These
two components are hardly mitigated by using electrical filters
due to the small frequency space between them and the funda-
mental products. However, the IMD3 suppression of 15 dB is
achieved, while the powers of fundamental products keep con-
stant by applying the IIE. In addition, the electrical spectra are
measured as shown in Figs. 5(c)–5(f) when the frequencies of the
input two-tone RF signals are changed to be 2.1, 2.14 GHz and
4.11, 4.13 GHz, respectively. In these cases, the ANN is still
trained by using two-tone signals with the frequency of 2.11

and 2.13 GHz. As can be seen, the IMD3 components are also
suppressed significantly after compensation with the proposed
IIE, which indicates that such an ANN can also work for the
two-tone RF signals with other frequencies.
In order to further verify the performance of the SFDR, the

link transfer functions are trained by using the proposed IIE
when the input RF power changes from 8 dBm to 12 dBm. In
this case, the SFDRs before and after IIE are shown in Fig. 6. As
can be seen, the SFDR before linearization is 95.2 dB · Hz2=3,
with a measured noise floor of −140 dBm=Hz. After equaliza-
tion, the SFDR increases to 106.5 dB · Hz2=3.

5. Conclusion

In conclusion, a linearized downconverted microwave photonic
link based on fast and IIE is theoretically analyzed and experi-
mentally demonstrated. With the supervised learning, the whole
transfer function of the link can be linearized. Experimental
results show that an IMD3 suppression of 15 dB is achieved,
and the training epochs reduce to only five. Furthermore, the
SFDR is improved from 95.2 dB · Hz2=3 to 106.5 dB · Hz2=3.
The proposed linearization method is highly promising in non-
cooperative RoF systems.
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